博客
关于我
python入门-----生成器generator
阅读量:209 次
发布时间:2019-02-28

本文共 991 字,大约阅读时间需要 3 分钟。

生成器(Generator)是Python中一种轻量级的迭代工具,它允许我们在不预先创建完整数据结构的情况下,逐步生成和迭代数据。这种机制特别适用于处理大量数据或按需生成数据的情况。

生成器的概念

生成器通过yield关键字逐步返回值,而不是像函数那样一次性返回所有值。yield语句可以暂停生成器的执行,并在程序离开时恢复生成器的执行位置。生成器可以看作是协同程序(coroutine),即可以被挂起、恢复或重启的函数。

例1:简单的生成器

def myGen():    print('生成器被执行!')    yield 1    yield 2
myG = myGen()next(myG)  # 输出: 生成器被执行!next(myG)  # 输出: 1next(myG)  # 输出: 2

例2:斐波那契数列生成器

def libs():    a, b = 0, 1    while True:        a, b = b, a + b        yield a
for each in libs():    if each > 100:        break    print(each, end=' ')

输出:

1 1 2 3 5 8 13 21 34 55 89

next()函数

next()函数用于逐个调用生成器的yield值。通过next()函数,我们可以按需获取生成器返回的值,而无需一次性加载所有数据。

创建生成器

生成器可以通过将列表生成式的[]改为()来创建。例如:

e = (i for i in range(10))print(e)

输出为:

at 0x0000026F1A8D4C48>

生成器的使用

生成器可以通过for循环迭代使用:

g = (x for x in range(2))print(next(g))  # 输出: 0print(next(g))  # 输出: 1print(next(g))  # 输出: Traceback (most recent call last): ...

生成器的优势在于,它只生成需要的值,节省了内存。与传统的列表相比,生成器在处理大数据量时更加高效。

通过以上示例可以看出,生成器是一种灵活且高效的数据处理工具,广泛应用于处理大型数据集、网络请求等场景。

转载地址:http://fvsi.baihongyu.com/

你可能感兴趣的文章
Nginx 反向代理 MinIO 及 ruoyi-vue-pro 配置 MinIO 详解
查看>>
nginx 反向代理 转发请求时,有时好有时没反应,产生原因及解决
查看>>
Nginx 反向代理解决跨域问题
查看>>
Nginx 反向代理配置去除前缀
查看>>
nginx 后端获取真实ip
查看>>
Nginx 多端口配置和访问异常问题的排查与优化
查看>>
Nginx 如何代理转发传递真实 ip 地址?
查看>>
Nginx 学习总结(16)—— 动静分离、压缩、缓存、黑白名单、性能等内容温习
查看>>
Nginx 学习总结(17)—— 8 个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
查看>>
Nginx 学习(一):Nginx 下载和启动
查看>>
nginx 常用指令配置总结
查看>>
Nginx 常用配置清单
查看>>
nginx 常用配置记录
查看>>
nginx 开启ssl模块 [emerg] the “ssl“ parameter requires ngx_http_ssl_module in /usr/local/nginx
查看>>
Nginx 我们必须知道的那些事
查看>>
Nginx 的 proxy_pass 使用简介
查看>>
Nginx 的配置文件中的 keepalive 介绍
查看>>
Nginx 结合 consul 实现动态负载均衡
查看>>
Nginx 负载均衡与权重配置解析
查看>>
Nginx 负载均衡详解
查看>>